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A fast computing technique is presented for numerical solutions of diffusion-type equations. 
The essence of this technique consists of performing the numerical computation using about a 
half number of variables without loss of numerical stability and accuracy by making use of 
analytical relations under the governing equation. Numerical stability of the present scheme is 
superior to usual schemes. Test calculations for a thermal transient problem with 100 meshes 
show that the computing time is decreased to about 4 as compared with a usual method. 
c’ 1986 Academic Press. Inc. 

1. INTRODUCTION 

Recently, there has been a growing need for the application of numerical analysis 
of diffusion and convection problems in complicated systems with large geometries 
such as thermohydraulic problems in connection with detailed hot spot temperature 
analyses in a nuclear reactor core under both normal and off-normal operating con- 
ditions [l, 21. 

In the convection problems, there have been presented some of accelerated com- 
puting techniques such as methods using a parabolic flow approximation for fluid 
flows with one primary flow direction [3], and introducing the velocity-correction 
factors and cell boundary conditions parameters in the pressure iteration procedure 
[I]. In the diffusion problems, there have been presented some of accelerated com- 
puting techniques for discrete Poisson equations such as SOR (successive over- 
relaxation) method [4, 51 and TDM (tridiagonal-matrix) method [6] in the 
explicit scheme, and fast matrix transpose method [7, S] and fast Poisson-solver 
method [9, 10, 1 l] in the implicit scheme. 

The purpose of this paper is to present a fast computing technique for the dif- 
fusion-type equations. In this technique, the numerical computation is performed by 
making use of about a half number of variables without loss of numerical stability 
and accuracy based on analytical relations under the governing equation. 
Numerical stability in the present scheme is investigated based on the linear theory 
by von Neumann [12]. 

To demonstrate the effectiveness of this technique, the computing time is com- 
pared with that using a usual method for a thermal transient problem. 
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To simplify the discussion, we present the scheme hers in the context of a 2- 
dimensional thermal problem, but the extension to three dimensions is immediate. 
Moreover, the idea of the present method could be applied to the more general 
hnear differential equations and be used in conjunction with the usual accelerated 
computing techniques. 

2. TECHNIQUE FOR DIFFUSION-TYPE EQLXXONS 

We will consider the following heat conduction equation as an example of dif- 
fusion type equations: 

I 
i (pCT) = div(k grad T) + Q, u’l) 

where T. p, C. and k are temperature, density, specific heat. and thermal conduc- 
tivity of material, respectively. Q is heat source per unit volume and unit time. 

Figure 1 shows the computational region which is divided into a set of 
quadrilateral cells with spacings dxi and AJ,; in the Y and .I’ directions in the 2- 
dimensional Cartesian coordinate system, respectively. Ceils are labeled with an 
index (i,J). which denotes the cell number as counted from the origin in the .Y and 1: 
directions, respectively. di,j denotes 4(-y,, J:~) defined at the cell center, where S$ i.s a 
dummy symbol representing any one of the dependent variables. 

Using the Laossonen type difference scheme [I3 ] (i.e., backward difference) with 
respect to time and the central difference scheme with respect to space, as 
approximate solution can be obtained by the following modified difference equation 
as being exclusive of the nearest neighbor temperatures I Ti+ ,,;. T,.,. i ): - 
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FIG. 1. Cell arrangement in a computational region. With respect to the cell (i,j) under con- 
sideration, the indexes of the nearest neighbor cells with hatched lines are (i- l,j), (i,j- l), (i,jt I), 
and (i+l,j), and those of the next nearest neighbor cells are (i-2,j), (i-l,j-1), (i-l,j+l), 
(i,j-2), (i,j+2), (i+l,j-I), (i+l,j+l), and (i+2,j). 

Here 

.I 
‘% = I(Ax~,~)I~,~,~~(Ax~,~),~~,,~~ (fori’=i-landitl), 

31% Jr 

45 = [(dyj/2)/kij] &dyy/2),ki,J,, 
(forj’=j- 1 andj+ l), 

where AV,,j is the volume of cell (i,j) (AVi,j=Axj.Ayj. l), At is time increment, 
SC”’ is the interface between the cell (i, j) and the cell (i’, j’) and dependent variables 
with a prime represent the values at the old time t-At. 
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Equation (2) is nothing but an expression for the temperature T,.j under con- 
sideration in terms of the next nearest neighbor temperatures. except that the 
nearest neighbor termperatures are included as known values at old time step and 
implicity included through material properties. Equation (2) is derived ( 1) by 
expressing the nearest neighbor temperatures in terms of T,.j and the next nearest 
neighbor temperatures using the original Laossonen-type difference equation [ 131. 
and (2) by substituting these expressions into original difference equation (see 
Appendix A ). 

By Eq. (2), we can efficiently perform the numerical computation using about a 
half number of variables composed of the next nearest neighbor temperatures 
without loss of numerical accuracy. 

In the latter sections, we will put forward discussions on this finite difference 
equation in both the explicit scheme and the implicit scheme. 

3. INVESTIGATION 

3.1. Stahilit;) in the E.uplicit Scheme 

3.1.1. Steads State 

We will investigate the numerical stability for the steady state solution of Eq. (2 i 
in use of the SOR (successive over-relaxation) iterative method with the Liebman 
method [t4], which is a typical example of explicitly solving procedures. 

Based on the von Neumann stability theory in case of constant material proper- 
ties and a regular (Ax, = Ax, AJ’~ = Ay) system with periodic boundary conditions, 
the amplification factor G,(O,, O).) for the Fourier components of the deviation 
error from the true difference solution with phase angles 8, and 19,. is given by thz 
following equation (see Appendix B ): 

where 
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g,(Bx, e,,)= l-o+ 
[ 

co 
( 
1 cos 28, + p* cos(8, + e,“) 

l+4b2+/?4 2 

+ p2 COS(~, - e,,) + $ cos 2e,, )I 
2 

[ 

0 

+ ( 
1 sin 28, + B* sin(8, + e,) 

1+4p+p4 2 

+/?*sin(8 -8 )+zsin28 2 x J 2 11 Y ’ (3c) 

with b = Ax/Ay. From the stability condition G,(B,, 0,) < 1, we get the following 
inequality: 

w(2 - w)[(~~~ 28, - 1) + 2p(c0~(e, + e,.) 

+ c0s(e, - e,.j - 2) + ~(COS 28, - 1 )I G 0. (4) 
Since the value in the above square bracket is always less than zero, we get 

0<062, 

for all phase angles and all values of b. The above stability condition for the 
accelerating factor o is the same as that for the usual scheme using the nearest 
neighbor variables. Thus, it was shown that the numerical stability condition in the 
present scheme is not restricted as compared with the usual scheme. 

In the above SOR iteration, the temperature of the nearest neighbor cells 
removed in the iteration step can be calculated in terms of the next nearest 
neighbor temperatures and the material properties of all cells needed in the 
calculation may be calculated with a relevant interval in the iteration according to 
the necessity. Especially, this explicit scheme is effective for the weak dependency of 
material properties on temperatures. 

3.1.2. Transient State 

In a similar manner to the steady state, the amplification factor G,(0,, el.) for the 
transient state solution in use of the fully explicity scheme is given as follows (see 
Appendix C): 

1 
qe,, e,,) = i +7 

r+p pc ( > 
kAt [(~0~2e,-i)+2p*(c0~(e,+e~) 

+ c0s(e, - e,) - 2) + ~(COS 28, - i )I. (5) 

From the stability condition such that - 1 d G,(8,, e,.) < 1 for all phase angles, we 
get the following criterion for the time step At: 

O<At< 1+4p+p4 
( 

1 +P’ )(Pckdl’). 
(6) 
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On the other hand, the time step criterion for the usual scheme using the nearest 
neighbor variables is 

O<At< 
1 

3(1$jF) 
___. , - : 

I’> 

The ratio of the maximum value of A! in the present scheme to that in the usual 
scheme is 

2( 1 + p)’ 
1+4/P+fiJ 

This value is always larger than unity for all values of p. For instance, -in case ol 
,!? = 1 (3s = AJ~). a $ times larger value of At than that for the usual scheme is 
allowable for the present scheme. When /I -+ 0 or /I -+ X? twice the value of Ar is 
allowable as compared with the usual scheme. These limiting cases correspond to a 
l-dimensional problem. Then, it is considered that the diffusion time in the presenr 
scheme is twice as large as that in the usual scheme, since the adjacent cehs are 
treated implicitly in the present numerical calculation. 

The heat balance equations in the form of Eq. (21 for the whole computational 
region can be rearranged and combined into the following matrix form: 

[A].[T]=[k?]. 4s: 

where elements of the column vector [r] are composed of the temperatures a: 3 
location and its next nearest neighbors. 

Let the temperatures put in order such that ...I TiPr,j:..., Tip ,,/P,, T,- ,.lAjm...’ 
T+:, T,,,. Tj.,+2 . . . . . Tj,,.j-I ,... in [T]‘. Then, in case of a quadrilateral com- 
putational region, there are the following relations between the sequential number 
I’: 

‘.J of matrix elements arranged in [T] and the sequential number ?12j,j through he 
whole cells: 

with j,, being the maximum number of j. Non-zero elements corresponding to the 
row number s = njj in the square matrix [A] = [a, [] and the column vector 
LB] = [b,] are as follows: 
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where 

When the next nearest neighbor cells are outside the computational region, the 
above matrix elements are to be slighty modified according to the appropriate 
boundary conditions explained in Appendix A. 

Thus, the size of a matrix can be almost halved as compared with the usual 
scheme. The temperature of the nearest neighbor cells removed from the matrix 
elements can be calculated in terms of the next nearest neighbor temperatures 
included in the matrix elements. Then the material properties of all cells needed in 
the matrix calculation at the advanced time step are to be calculated. 

4. TEST CALCULATIONS 

To demonstrate the effectiveness of the present technique, test calculations for a 
thermal transient problem. Both the maximum mesh number iM and j, are 10. 
Adiabatic boundary conditions and heat transfer boundary conditions are 
employed on the boundaries at the both end sides of x-axis and on the boundaries 
at the both end sides of paxis, respectively. 

Two FORTRAN programs were run on the computer NEAC-ACOS S 1000 for 
the above test problem during 300 s after the initiation of the transient. One is the 
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previously developed RCT program [ 141 in which temperatures of all the com- 
putational cells are explicitly treated, resulting in use of 100 x 100 matrix. The other 
is based on the present scheme in which the nearest neighbor cells are removed 
from the matrix elements by applying the present idea, resulting in use of 50 x 50 
matrix. Alost the same results were obtained between the two programs. The RCT 
program required 135 s of CPU time, while the present program requied 47 s of 
CPU time. The greater the mesh number, the more decrease in the computing time. 

5. CONCLUSIONS 

Results obtained through the present study are summarized as follows: 

(1) A fast computing technique for numerical solutions of diffusion-ty~c 
equations was proposed. In the present technique, the numerical computation can 
be performed by using about a half number of variables based on the analytica! 
relations under the governing equations. 

(2) Numerical stability of the present scheme was investigated based on the 
iron Neumann linear theory. As compared with the usual schemes, the stability con- 
dition in the SOR iteration is not restricted and a larger time increment for trans- 
ient solutions is allowable. 

(3) Test calculations for the thermal transient problem with 100 meshes 
showed that the computing time was decreased to about f as compared with a ~lsual 
method. 

APPENDIX A 

Using the continuity condition of heat flux on the boundary between adjacent 
cells in Fig. 1, the incoming heat flux from ceil (i’, j) into cell (i,j) through the lnter- 
face ,!Q with the unit length in the z direction is given by 

(for i’ = i - I and i + 1) with corresponding expression for q$ (j’ =j - I and j i- 1 i 
having LIJJ~ in place of dxi. When the adjacent cell (i’,j) is outside the corn- 
putational region, the second term in the denominator and T,.,j in Eq. (Al) are to 
be slightly modified corresponding to boundary conditions. For example, in case of 
Dirichlet type boundary conditions Ti,,j is to be replaced by the specified tern-. 
perature; in case of heat transfer boundary condition the second term in the 
denominator is to be replaced by l/h, where h is heat transfer coefficient between 
the computational boundary and its environmental fluid; in case of adiabatic boun- 
dary conditions the limit that h approaches to zero is to be performed. Thus, an 
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approximate solution of Eq. (1) is obtained by the following finite difference 
equation using the differencing scheme of the Laossonen type [ 131: 

Pi,jci.jT,'~tp~.ic~~j~~i 

> 
A vi,j= C $1: + QijA Vi,j (A24 

(i'.i') 

=“;,;‘J(Tip,,j- Ti,j)+~:i”,-i(Tj+,,j- T;,j) 

+lj’::P’(Ti.j-, -Ti,j)+~i::‘+‘(Ti,j+,-T,j) 

+ Q,jA l’,j. (A2b) 

From Eq. (A2b), Ti,i of the cell (i, j) under consideration at time t is given by 

where 

j + p’,j;;K.J) A Vi j//fi-j, 

Ti,j in a steady state (or initial state) is given by removing the terms including At in 
Eq. (A3). In Eq. (A3), Ti,j is expressed in terms of the temperatures of the nearest 
neighbor cells (i + 1, j), (i, j &- 1) adjacent to the cell (i, j) under consideration. Next, 
we will express Tj,j in terms of only the next nearest neighbor temperatures, which 
are shown in Fig. 1. Expressing Tj, i,j and Ti, + 1 in terms of Ti,j and the next nearest 
neighbor temperatures (TiP,,j, TiP,,j-,, TiPI,j+l, Ti,jP2, Ti,j+Z, Ti+l.jPl, 
Ti+l,j+l, and Ti+,j) 
and T,j, 1 

using Eq. (A3) and substituting those expressions into Ti, ,,j 
in the right-hand side of Eq. (AZb), we obtain Eq. (1). 

APPENDIX B 

From Eq. (2), Ti,j under consideration in the steady state is given by 

@lb) 
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where 

Ti,F'= Tf,-;+o[.f'+'(T;~,.-i...., T,+?,jjb Tf,,] (B3e) 

= r~.j+o[rl.:'r~-t:,j+~i.S'Ti~~.,~I I ;"'T;y,+, 1 c ;.j 

+(!4'T~t~2+(!a:T' 
I., '.I i-j+2 + 5i.j I., 

;(6,p 
i+ I.;- 1 

+ '!'.) T! 
5 '., ,TI,,+L +4i.~'Ti+z,j+tl.~'- ':.,I' jK3bi 

In the above equation, the temperature of the ceils (i-2.j), (i- Z-j-- 1). 
(i - I, j + 1 j, and (i,.j - 2) are replaced by the latest values at the (I + 1 )th iteration 
while sweeping in the direction of increasing i and J In use of the kiebman method 
Cd]. In case of constant material properties and regular space meshes (.iJ*si= 3.~. 
3~; = AJ~)- <!.:I ,..., <l) are as follows: 
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Since both the exact solution and the numerical solution of Eq. (B3) satisfy the 
same difference equation, the error, 6T, of the numerical solution due to 
accumulation of round-off errors satisfies the same equation as Eq. (B3) except the 
source term introducing no errors. The general solution for 6T with periodic boun- 
dary conditions is 

where 0, and 19~ are any phase angles of the Fourier component. The variation of 
the amplitude V’(8,, e,,) vs iteration 1 is governed by the following amplification 
factor: 

036) 

In a straightforward calculation with substitution of Eqs. (B3) and (B4) into the 
error equation (i.e., Eq. (B3b) without the source term), we get Eq. (3) in Chapter 3 
for the amplification factor. 

APPENDIX C 

From Eq. (2), Ti,j under consideration in a transient state is given in the fully 
explicit scheme as follows: 

where 
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Here, an index 11 denotes the time step number as counted from the initial state 
For the constant material properties and regular meshes, $,.ti,...i $lgi art as 

follows: 

ased on the von Neumann linear theory, we get Eq. (5) for the amplification fac- 
tor 6, (Q,> OX) in a similar manner to GS(B,, O?.) for the steady state. 
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